Search results

Search for "metal-organic framework" in Full Text gives 11 result(s) in Beilstein Journal of Organic Chemistry.

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
  • charge–transfer transitions [95]. These transitions are commonly observed in metalorganic framework (MOF) HPCats, discussed more in Section 2.5. Dye-sensitised semiconductor photocatalysts have organic photosensitiser molecules immobilised to their surface. This strategy is typically used to activate a
PDF
Album
Review
Published 26 Jun 2020

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • -benzenedicarboxylate), Puthiaraj and co-workers have unprecedently discovered the catalytic activity of this metal-organic framework (MOF) for the synthesis of imidazo[1,2-a]pyridines [100]. The three-component, one-pot reaction between 1, 3 and nitromethane (10, Scheme 5) involved an intermolecular aza-Michael
PDF
Album
Review
Published 19 Jul 2019

Synthesis of dipolar molecular rotors as linkers for metal-organic frameworks

  • Sebastian Hamer,
  • Fynn Röhricht,
  • Marius Jakoby,
  • Ian A. Howard,
  • Xianghui Zhang,
  • Christian Näther and
  • Rainer Herges

Beilstein J. Org. Chem. 2019, 15, 1331–1338, doi:10.3762/bjoc.15.132

Graphical Abstract
  • linkers in MOFs with potential applications as ferroelectric materials and for optical signal processing. Keywords: benzothiadiazole; dipolar rotor; fluorescence; large dipole moment; metal organic framework linker; Introduction Rotors are among the fundamental functional units in engineering in our
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2019

Determining the predominant tautomeric structure of iodine-based group-transfer reagents by 17O NMR spectroscopy

  • Nico Santschi,
  • Cody Ross Pitts,
  • Benson J. Jelier and
  • René Verel

Beilstein J. Org. Chem. 2018, 14, 2289–2294, doi:10.3762/bjoc.14.203

Graphical Abstract
  • corroboration came about by successfully encapsulating 5b, an oil under ambient conditions, in a metal-organic framework (5b@MOF). This non-trivial protocol rendered it amenable to X-ray diffraction studies confirming the aforementioned structural reassignment. From a theoretical standpoint, acyclic isomer 5b
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Tetrathiafulvalene – a redox-switchable building block to control motion in mechanically interlocked molecules

  • Hendrik V. Schröder and
  • Christoph A. Schalley

Beilstein J. Org. Chem. 2018, 14, 2163–2185, doi:10.3762/bjoc.14.190

Graphical Abstract
  • this single compound. 6.2. Switchable catenanes in ordered arrays Besides ordered arrays on surfaces, on nanoparticles or in Langmuir–Blodgett films, a possibility to arrange bistable catenanes in an ordered fashion is to incorporate them into the rigid scaffold of a metal-organic framework (MOF) [107
PDF
Album
Review
Published 20 Aug 2018

Fluorogenic PNA probes

  • Tirayut Vilaivan

Beilstein J. Org. Chem. 2018, 14, 253–281, doi:10.3762/bjoc.14.17

Graphical Abstract
  • restoration of the fluorescence in pretty much the same way as GO. Likewise, carbon nitride nanosheets [148] and a zirconium-based nano metal-organic framework (UiO-66) [149] behaved similarly. In addition, they have been successfully used in combination with PNA for monitoring of miRNA inside living cells
PDF
Album
Review
Published 29 Jan 2018

Phosphonic acid: preparation and applications

  • Charlotte M. Sevrain,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2017, 13, 2186–2213, doi:10.3762/bjoc.13.219

Graphical Abstract
  • identified as metal organic framework (MOF) or coordination polymers that are synthesized by reaction with a metallic salts (e.g., copper [65], lanthanides [66]) under hydrothermal conditions [67][68] or by insertion of phosphonic acid in low dimensional inorganic materials like layered double hydroxide (LDH
PDF
Album
Review
Published 20 Oct 2017

Direct arylation catalysis with chloro[8-(dimesitylboryl)quinoline-κN]copper(I)

  • Sem Raj Tamang and
  • James D. Hoefelmeyer

Beilstein J. Org. Chem. 2016, 12, 2757–2762, doi:10.3762/bjoc.12.272

Graphical Abstract
  • ], and Cu [34][35][36][37]) or an aluminum-based metal-organic framework [38], and there are several reports of metal-free direct arylation reactions in which the reaction is promoted with 2–3 equivalents KO(t-Bu) and (typically) 10–30 mol % of an additive [39][40][41][42][43][44][45][46][47][48]. The
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2016

Hydroxy-functionalized hyper-cross-linked ultra-microporous organic polymers for selective CO2 capture at room temperature

  • Partha Samanta,
  • Priyanshu Chandra and
  • Sujit K. Ghosh

Beilstein J. Org. Chem. 2016, 12, 1981–1986, doi:10.3762/bjoc.12.185

Graphical Abstract
  • , H2 and O2 at room temperature. A high isosteric heat of adsorption (Qst) has been obtained for both materials because of strong interactions between polar –OH groups and CO2 molecules. Keywords: carbon dioxide capture; hyper-cross-linked polymer; metal-organic framework; microporous organic polymer
PDF
Album
Supp Info
Letter
Published 02 Sep 2016

Cross-dehydrogenative coupling for the intermolecular C–O bond formation

  • Igor B. Krylov,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2015, 11, 92–146, doi:10.3762/bjoc.11.13

Graphical Abstract
  • ]. The coupling of aldehydes and formamides with 2-substituted phenols was carried out in the presence of heterogeneous catalysts, such as CuO on α-Fe2O3-modified carbon nanotubes (a magnetically separable catalyst) [158] and the metal-organic framework Cu2(4,4’-biphenyldicarboxylate)2(4,4’-bipyridine
PDF
Album
Review
Published 20 Jan 2015
Other Beilstein-Institut Open Science Activities